25 research outputs found

    Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Get PDF
    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment

    Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    Get PDF
    The streamwise lift distribution of a wing-canard-stabilator-body configuration was varied to study its effect on the near-field sonic boom signature. The investigation was carried out via solving the three-dimensional Euler equation with the OVERFLOW-2 flow solver. The computational meshes were created using the Chimera overset grid topology. The lift distribution was varied by first deflecting the canard then trimming the aircraft with the wing and the stabilator while maintaining constant lift coefficient of 0.05. A validation study using experimental results was also performed to determine required grid resolution and appropriate numerical scheme. A wide range of streamwise lift distribution was simulated. The result shows that the longitudinal wave propagation speed can be controlled through lift distribution thus controlling the shock coalescence

    Intelligent Control for Drag Reduction on the X-48B Vehicle

    Get PDF
    This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed

    Subthreshold electrical stimulation as a low power electrical treatment for stroke rehabilitation

    Get PDF
    As a promising future treatment for stroke rehabilitation, researchers have developed direct brain stimulation to manipulate the neural excitability. However, there has been less interest in energy consumption and unexpected side effect caused by electrical stimulation to bring functional recovery for stroke rehabilitation. In this study, we propose an engineering approach with subthreshold electrical stimulation (STES) to bring functional recovery. Here, we show a low level of electrical stimulation boosted causal excitation in connected neurons and strengthened the synaptic weight in a simulation study. We found that STES with motor training enhanced functional recovery after stroke in vivo. STES was shown to induce neural reconstruction, indicated by higher neurite expression in the stimulated regions and correlated changes in behavioral performance and neural spike firing pattern during the rehabilitation process. This will reduce the energy consumption of implantable devices and the side effects caused by stimulating unwanted brain regions. © 2021, The Author(s).1

    Transdifferentiation-inducing HCCR-1 oncogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell transdifferentiation is characterized by loss of some phenotypes along with acquisition of new phenotypes in differentiated cells. The differentiated state of a given cell is not irreversible. It depends on the up- and downregulation exerted by specific molecules.</p> <p>Results</p> <p>We report here that <it>HCCR-1</it>, previously shown to play an oncogenic role in human cancers, induces epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in human and mouse, respectively. The stem cell factor receptor CD117/c-Kit was induced in this transdifferentiated (EMT) sarcoma tissues. This MET occurring in <it>HCCR-1 </it>transfected cells is reminiscent of the transdifferentiation process during nephrogenesis. Indeed, expression of <it>HCCR-1 </it>was observed during the embryonic development of the kidney. This suggests that <it>HCCR-1 </it>might be involved in the transdifferentiation process of cancer stem cell.</p> <p>Conclusions</p> <p>Therefore, we propose that <it>HCCR-1 </it>may be a regulatory factor that stimulates morphogenesis of epithelia or mesenchyme during neoplastic transformation.</p

    Heisenberg-Limited Metrology via Weak-Value Amplification without Using Entangled Resources

    No full text
    © 2022 American Physical SocietyWeak-value amplification (WVA) provides a way for amplified detection of a tiny physical signal at the expense of a lower detection probability. Despite this trade-off, due to its robustness against certain types of noise, WVA has advantages over conventional measurements in precision metrology. Moreover, it has been shown that WVA-based metrology can reach the Heisenberg limit using entangled resources, but preparing macroscopic entangled resources remains challenging. Here, we demonstrate a novel WVA scheme based on iterative interactions, achieving the Heisenberg-limited precision scaling without resorting to entanglement. This indicates that the perceived advantages of the entanglement-assisted WVA are in fact due to iterative interactions between each particle of an entangled system and a meter, rather than coming from the entanglement itself. Our work opens a practical pathway for achieving the Heisenberg-limited WVA without using fragile and experimentally demanding entangled resources.11Nsciescopu

    Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

    No full text
    Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3’-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result. © The Korean Society for Molecular and Cellular Biology. All rights reserved.1

    Longitudinal profiling of oligomeric A beta in human nasal discharge reflecting cognitive decline in probable Alzheimer&apos;s disease

    No full text
    Despite clinical evidence indicating a close relationship between olfactory dysfunction and Alzheimer’s disease (AD), further investigations are warranted to determine the diagnostic potential of nasal surrogate biomarkers for AD. In this study, we first identified soluble amyloid-β (Aβ), the key biomarker of AD, in patient nasal discharge using proteomic analysis. Then, we profiled the significant differences in Aβ oligomers level between patient groups with mild or moderate cognitive decline (n = 39) and an age-matched normal control group (n = 21) by immunoblot analysis and comparing the levels of Aβ by a self-standard method with interdigitated microelectrode sensor systems. All subjects received the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), and the Global Deterioration Scale (GDS) for grouping. We observed higher levels of Aβ oligomers in probable AD subjects with lower MMSE, higher CDR, and higher GDS compared to the normal control group. Moreover, mild and moderate subject groups could be distinguished based on the increased composition of two oligomers, 12-mer Aβ*56 and 15-mer AβO, respectively. The longitudinal cohort study confirmed that the cognitive decline of mild AD patients with high nasal discharge Aβ*56 levels advanced to the moderate stage within three years. Our clinical evidence strongly supports the view that the presence of oligomeric Aβ proteins in nasal discharge is a potential surrogate biomarker of AD and an indicator of cognitive decline progression. © 2020, The Author(s).1

    Characterization of the complete mitochondrial genome of Dactylopterus volitans (Syngnathiformes, Dactylopteridae)

    No full text
    The complete mitochondrial genome was determined for the flying gurnard Dactylopterus volitans belonging to the family Dactylopteridae. The total length of the D. volitans mitochondrial genome is 16,632 bp, which consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region. It has the typical vertebrate mitochondrial gene arrangement. Phylogenetic analysis using mitochondrial genomes of 20 species showed that D. volitans formed a well-supported monophyletic group with other Dactylopteridae species

    Characterization of the complete mitochondrial genome of Periophthalmus modestus (Gobiiformes, Oxudercidae) and phylogenetic analysis

    No full text
    The complete mitochondrial genome was determined for the shuttles hoppfish Periophthalmus modestus belonging to the family Oxudercidae. The length of the complete mitochondrial genome is 16,510 bp and has the typical vertebrate mitochondrial gene arrangement, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region. Phylogenetic analysis using mitochondrial genomes of 15 species showed that P. modestus formed a well-supported monophyletic group with genus Periophthalmus species and rooted with other Oxudercidae species
    corecore